
CO~p Y.,- ' -F1

AD-A240 989 SER C.

IDA PAPER P-2022

EXTENDING THE CNVEO SEARCH MODEL TO THE
MULTITARGET ENVIRONMENT

Stanley R. Rotman
Marta L. Kowalczyk

DTIC
ELECTE

June 1987 TU

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

I~-~UON A'ATEM, rr A I
Aprve Am publi. raam

91-12059

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregar-, Street, Alx....ria, Virginia 22311

IDA Log No. HO 87-32236



DEFINITIONS
IDA publishes thi lollowing documents to repurt do esmults of Its work.

Reports
Reports acm the most auuitatlve and most carefully consieed products IDA publishes.
They wmnally embody mutt.l of majoe onaects which (a) have a direct bearing on decisions
affecting major programs, or (b) adresn ise of significant concern to Ihe Executive
Branch, the Congress adier ills public, or (c) address issu that have significant economic
Implications. IDA Reports ame reviewed by outside panels of exports to ensere their high
quaIty and relevance to Me problems; studied, and they afreleiasedi by the Preslident of IDA.

Papers
Paopers normally address; relatively restricted technicai or policy issuas. They communicate
the rsults; of special analyses, Interim reports or phases olia task, ad hoc or quick reaction
Won. Pape#$ Ie rewtewed to ensur eat they meet standards similar to those expected a'
refereed poear In professional Journals.

Memorandum Reports
IDA Memorandum Reports are sed for the convenience of Mhe sponsor or the analysts to
record substantive work don In quick reaction studies and major Interactive tacta support
:ctvtle to make available prit~mlary ujii tentative results of analyses or of working
Irop and ;an@[ adhfas; ts forward Information that Is essentIally unanalyzad and ual-
oatd; or to riake a record of conferences, meetings, or briefings, or of data deveioped In
the cours of an linvestiation. Revlon at Memorandum Reports is saited to their content

The results ofIDA work as alsocenvoy d by breflnpand Informal memoranda tosponsors0
and others designated by the sponsors, when appropriate.

The work In this document was conducted under contract UDA N0384 C 0031 for the
Depautent of Defese. Tin publinc"ato this IDA document does not Indicate endorserent
by the Department of Doeese nor shiuld the content be cosatod ae reflecting the Ofcial
poeftion of OWa agenc.j

This Paper has baen reviewed by IDA is assre that it meets high standards of thoroughness,
objectivty. and mn analytical methodology and that the cocusion stem from the
methodoleff.J

Appovd lr ublc elese ditrbutonusumie0



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

NA
2b.__________________________GRAOINGSCHEDULE Approved for public release; distribution unlimited.
2b. DECLASSIFICATIONIOOWNGRADING SCHEDULE

NA
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2022
6a. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses (it applicable) DoD-IDA Management Office, OUSDRE
6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (CITY, STATE, AND ZIP CODE)

1801 N. Beauregard Street 1801 N. Beauregard Street
Alexandria, VA 22311 Alexandria, VA 22311

8a. NAME OF FUNDINGJSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It applicable)OUSDRE (R&AT) MST MDA 903 84 C 0031

Be. ADDRESS (City, State, and Zip Code) 10. SOURCE OF FUNDING NUMBERS

The Pentagon PROGRAM PROJECT TASK NO. WORK UNITThingon ELEMENT NO. ACCESSION NO.Washington, DC 20301-3071 T-D2-210
Subtask E

!1. TITLE (Include Security Claaalllcatlon)

Extending the CNVEO Search Model to the Multitarget Environment
12. PERSONAL AUTHOR(S).

Stanley R. Rotman, Marta L. Kowalczyk
13. TYPE OF REPORT 3b. TIME COVERED 14. DATE OF REPORT (Yew, Month. Day) 15. PAGE COUNT

Final FROM 11/86 TO 5/87 June1987 52
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse It neceaaary and identify by block number)

FIELD GROUP SUB-GROUP search, target acquisition, combat, electrooptics, multiple targets,
mathematical models, simulations

19. ABSTRACT (Continue on reverse It necesaary and Identify by block number)

This paper develops a multitarget acquisition model as an extension of the single-target acquisition
model of the Army's Center for Night Vision and Electro-Optics. The paper then outlines the implementation

of the multitarget acquisition model in battlefield combat simulations. Finally, the paper suggests how the

model may be used to simulate field tests accurately and how some simple experiments can validate the

model.

20. DISTR;aUTIONiAvdLA8ILIT, uF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

C1 UNCLASSIFIED/UNLIMITED 03 SAMt AS RPT. 0 oTic USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Marta L. Kowalczyk (703) 578-2862
DO FORM 1473. 64 MAR 83 APR edition may be used until exhausted.

All other editlona re obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



IDA PAPER P-2022

EXTENDING THE C -,, , SEARCH MODEL -f IHE
MULTITARGET ENVIRONMENT

Stanley R. Rotman
Marta L. Kowalczyk

June 1987

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-D2-210, Subtask E



FOREWORD

This paper was prepared under Task T-D2-210, Subtask E, for

the Office of the Under Secretary of Defense for Research and

Engineering, Research and Advanced Technology, Military Systems

Technology, under the technical cognizance of Dr. John M. MacCallum,

OUSDRE(R&AT/MST), and Dr. Herbert K. Fallin, Jr., Technical

Advisor, Office of the Deputy Chief of Staff for Operations and

Plans, U.S. Army (DAMO-ZD).

9..

AL oosoa For

NTIS GRA&I
DTIC TAB
Unwanounced 0

Justificatio

By-
Distributiozq

Availability Code"

Avall and/or

Diet Speolal



ABSTRACT

This paper develops a multitarget acquisition model as an

extension of the single-target acquisition model of the Army'-

Center for Night Vision and Electro-Opuics. The paper then

outlines the implementation of the multitarget acquisition

model in battlefield combat simulations. Finally, the paper

suggests how the model may be used to simulate field tests

accurately and how some simple experiments can validate Lhe

model.
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SUMMARY

The search model of the Army's Center for Night Vision and

Electro-Optics (CNVEO) is used by the U.S. armed services and

those of several allied countries in the calculations of their

battlefield models and for the interpretation of field test

results. In this paper, we extend the model to the case of a

single observer searching a field of regard in which several

targets are present.

We first consider a single field of view in which a fixed

number of independent targets are located. The expression for

the cumulative multitarget acquisition probability is similar

to that for single-target acquisition, P(t) = P.[l-exp(-t/t)I.

The multitarget, single-glimpse acquisition rate is simply the

sum of the single-target, single-glimpse acquisition rates.

The derivation of the multitarget P., the probability that

a target will be acquired in essentially infinite time, is

dependent on how one understands the existence of a nonunity

P. in single-target acquisition. The value of P. may be due

to the different number of observable cycles each member of

a normal observer ensemble needs for target detection. Another

possibility is that P. is due to the unique interaction of

each target image and the surrounding clutter in the mind of

each member of the observer ensemble. A third possibility is

that after a finite length of time, an observer ceases to

search effectively because of either mental weariness or the

repetition of features that attract the human eye. We show

that how one interprets the cause of the single-target P.

affects the form of the multitarget Pa. Calculations are

done both for the case wherp we are only concerned with the
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first target obtained and for the situation in which the detec-

tion of all.targets present is desirable.

We then consider field-of-regard search. In the interest

of simplification, the field of regard is considered to consist

of several discrete fields of view; each field of view is ran-

domly accessed for a fixed time To . Both the case where the 0

number of targets in each field of view is known in advance and

the case where the targets are randomly distributed through the

field of regard are considered. Expressions similar to those

used for single-target field-of-regard search are obtained. 0

Practical guidance for how this multitarget model could be

implemented in a battlefield model is given in this paper. in

addition, field tests that will validate the field-of-view and

field-of-regard multitarget search model are suggested. This 0

paper represents a logical and necessary extension of the CNVEO

model to multitarget battlefield models and field tests.
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I. INTRODUCTION

An understanding of the human target acquisition process

has been of interest to researchers in industrial, academic,

and defense-related settings. Despite advances made in under-

standing the operation of the eye and the physiological inter-

action between the eye and the brain, factors such as the

search pattern used to scan a picture and the influence of

clutter on the detection probability of a target are still

treated empirically.

The search model of the Army's Center for Night Vision

and Electro-OpThtics (CNVEO) predicts single-target acquisition

probabilitie3 tor various search tasks using electro-optic

devices.1 ,2 The model computes the single-glimpse probability

by considering the iur me of resolvable cycles across the

target (the Johnso., criteria); the number of resolvable cycles

needed for detection, recognition, and identification is d

function of the clutter level, input qualitatively into the

modcl. The CNVEO model has bee,, adopted by several of the (1.S.

armed services as well as allied countries, including Canada

and Australia. Britain, where several model approaches are

used, is a notable exception. 3 One British approach to search

modeling explicitly uses a visual lobe, which is defined as the

angle from the foveal axis at which the human eye can just

detect a target. The CNVEO approach, on the other hand, uses

a mean glimpse time, but it is possible in that approach to

implicitly define a visual lobe. After such an assumption is

made, the equations used in both the British and the CNVEO

search models are similar.



While the CNVEO model itself is a single-observer, single-

Larget model, it is used in modeling battlefield environments in

which multitarget situations exist. This paper represents an

attempt to expand the CNVEO model to multitarget conditions.

We first consider a single field of view (FOV) in which several

targets may be present. We then expand our consideration to 0

field-of-regard search. Expressions similar to those used for

single-target field-of-regard search are obtained.

Since the CNVEO model is semiempirical with regard Lo the

number of line cycles needed for detection and the asymptotic

probability of detection for long times, we must consider the

assumptions that underlie the CNVEO model. In other words, this

paper considers the CNVEO model to be correct in the single-

target condition; nevertheless, understanding the driving factor 0

in several of its empirical parameters is crucial for extrapo-

lating the model to the multitarget case.

Practical guidance for how this multitarget model could be

implemented in a battlefield model is given in this paper. In 0

addition, field tests that will validate the field-of-view and

field-of-regard multitarget search model are suggested.

2
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II. FIELD-OF-VIEW SEARCH

A. OVERVIEW of CNVEO MODEL

The expression for the probability as a function of time

P(t) of detecting a single target with field-of-view search is

P(t)=P [1 -exp(-Pt/tf)] (1a)

or

P (t) = P [1 - exp (-t / T)], 1D

where P 0 is the single-glimpse probability, tf is the mean fixa-

tion time (assumed to be 0.3 seconds), T is the mean acquisition

time, and P. is the fraction of the normal observer ensemble by

whom the target can be found, given unlimited time. In the orig-

inal formulation of this model, P. is assumed to be equal to

1 + (N/N50 )

where

N = the number of resolvable cycles across the target

N5O = the number of cycles required for Pc to equal 0.5

E = 2.7 + 0.7 (N/N5 0 ).

The number of resolvable cycles across a target, N, is equal to

the product of the critical target dimension, usually chosen as

the minimum overall dimension of the target from the observer's

viewpoint, and the spatial freque±ncy of the smallest target

3



equivalent bar pattern that can be resolved through the viewing

device. The number of resolvable cycles required for P. to

equal 0.3, N50 , is typically set equal to 0.5, 1, and 2 for low,

medium, ,nd high clutter, respectively.

The mean acquisition time T is equal to 6.8 N50/N. Since

Poo equals approximately N/2N 50 for N/N50 less than 2, T can be

set equal to 3.4/P. for those values of N/N50. (Note that for

large N the two expressions yield different values for T. It

is hypothesized that, in this case, the former value of T should

be used).

If one considers the case in which a single value for the

glimpse probability (called P0 ) exists, and independent glimpses

are occurring at a rate i/tf, the probability of detection as a

function of time would be4

P (t) = 1 - exp (-Pot /tf ). (3)

This is the standard expression for the probability of the first

arrival time for a Poisson process.

It is not intuitively obvious why the P. term in Eq. 1

exists, although experimentally it is well established. Lawson

et al.1 attribute P, to the distribution in the number of observ-

able cycles each member of a normal observer ensemble needs for

target detection. For any particular ensemble, there will be a

subset of observers who will never find a target with that size

and contrast. Thus, P. is the fraction of observers who can

find the target. (Of course, even within the subclass of people

who can find the target there are those who have a higher-than-

average glimpse probability and those who have a lower one;

however, the model uses a constant glimpse probability P0 for

this group.) It should be noted that C.G. Drury 5 has attributed

the existence of P. not to a failure in the search process but

to mistaken identification in a separate examination process.

It can be shown that the conclusions we reach in this .aper also

apply to the Drury model.
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If one assumes that each observer can be ranked by his per-

ception ability, his detection of one target will be correlated

with his ability to detect a second target, i.e., an observer

who cannot observe a target with a higher effective value of

P . will never find a target with a lesser value of P..

We shall call this possibility Assumption 1.

Several other possibilities would explain the existence of

a nonunity P . in a realistic terrain. One possibility is that

P. is due to the unique interaction of the target image and

the surrounding clutter in the mind of each member of the ob-

server ensemble. Any particular target will be mistaken for a

background object by some fraction of the observer ensemble.

It should be noted that it is quite possible that someone who

cannot detect an "obvious" target in realistic terrain (with a

large number of resolvable cycles) may be able to detect a less-

obvious target in a different orientation. We shall call this

possibility Assumption 2.

Another possibility for the origin of P . is that after a

finite length of time, an observer ceases to search effectively

because of either mental weariness or the repetitiveness of the

search of features that attract the human eye. As time goes

on, one ceases to search efficiently and, hence, if one has not

acquired the target by then, one never does. We shall call this

possibility Assumption 3.

Regardless of the reason why P . exists, the single-target

probability curves can nevertheless be fitted to an empirically

observed P. . The same is true of the clutter level. The value

of N5 0 should be a function not only of the general surroundings

but also of the specific relationship of the target to the back-

ground as well as to particular objects within the background.

(In a scene that is half forest and half grassy plains, the

detectability of the target should depend on whether the target

is in the forest or on the plains, even if the immediate contrast

is the same in each case.) The fixing of a specific value of N5 0
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0

represents an expected average value of the effect that a spe-

cific amount of clutter should have on target detection.

B. MULTITARGET FIELD-OF-VIEW SEARCH SCENARIO--FIRST DETECTION

Before we actually derive any probability-of-detection

expressions, it will be useful to design a test case to which

the analytical expressions can be applied to provide a numerical

example. Assume that three targets are in our field of view.

Their characteristics are

Target 1 Target 2 Target 3

P" 0.8 0.7 0.5

P0/tf 0.1 0.05 0.01

Thus, for example, the probability of detection for T1 in the

single-target case is

P (t) = 0.8 [1 - exp (-0. It)]. (4)

We now wish to consider the derivation of the expression

for the probability of multitarget detection. As a preliminary

analysis, let us assume that we are interested in the first

detection of any target in an FOV in which M targets are present.

If one considers the model given in Eq. 3, in which the search

process is conducted through a set of glimpses with a constant

probability of detection P0*, one obtains for the first detection

P (t) = 1- exp (-P 0 t/tf), (5)

where

M

0= oI (6)

6



and P0 i is the value of P0 for the ith target. The underlying

assumption for Eq. 6 is that P0 is the probability for a given

glimpse having the target within the foveal area times the

probability of correctly detecting the target. In this case,
P0* is the sum of the Poi if they are located in separate foveal

areas, and hence the probability of detecting a target is inde-

pendent of detecting any other target.

By analogy with Eq. 1, we can assume that a fraction of

the observer ensemble will never find the target. How to

incorporate this into a form similar to Eq. 1 will depend

heavily on which assumption one uses for the origin of P0 .

It is interesting to note that each of the assumptions

yields a different way to classify people in the multitarget

acquisition process. We assume that we have M targets (labeled

Ti) ordered so that the ith target is more obvious (has a

larger P.) than the i+lth target. This convention will be

used throughout this paper. Each target has associated with

it a P.i (P. for the ith target). Under Assumption 1, there

would be M+1 classes of people: those who can see none of the

targets, those who can see only the most obvious target, those

who can see the two most obvious targets, etc. The probability

of being in the ith class (which can see Ti_ 1 but not Ti) is

Poi-l - P,i. (P,0 equals 1 and P 1M+l equals 0.)

Under Assumption 2, the probability of being able to see a

particular target is independent of being able to see any other

target. There exist 2M classes. If one places the targets

that an individual can detect into set C and the targets that

an individual cannot detect into set D, the probability of being

a member of a particular class is

M M

i- f (I-P 
(

*Tie V Tke V

7



Finally, under Assumption 3, there is only one class of

person; all observers can potentially detect all targets.

The nomenclature we shall use for the probability of detec-

tion is P(tIM, M-M', V, Tj, J, ti), where M is the number of

targets in the FOV, M-M' is the t. .al number of undetected tar-

gets in the FOV at time ti , V is the set of undetected targets

in the FOV at time ti , Tj is the detected target with the least

value of P., and J is the ranking of the target such that

Pwi > P.j if i < J, and Pi < Pqj if i > J.

For first detection probability starting at time 0, we

have P(tIM, M, V, j, 0, 0); we abbreviate this as P(tIM, V).

Under Assumption 1, the rate of detection will depend on

which of the M+l classes of people the observer belongs to.

Given that the M targets are ranked in difficulty so that

P~i > P~i+l, the probability of detection would be

MfF
P(tjMV)=j (P 0-P 1) 1 -exp- IP,"t (8)

PIV==I [ k}Jj=f

where

P4M+l = 0.

It is interesting to note that P(t=-), i.e., the fraction of

observers who eventually find a target is equal to the fraction

who could find the most obvious target. Adding on less obvious

targets affects the rate of acquisition but not the final per-

centage of target acquirers. Using our standard numerical

example quoted at the beginning of this section, we have

P ( t I 3, {T, T2 , T 3}) = 0.1[1 - exp (-0.1t)] + 0.2[1 - exp (-0.15t )(9

+ 0.5[1 - exp (-.16t)],

8



i.e., 10 percent of the people detect only T1 at a rate of 0.1

sec - 1, 20 percent can detect either T1 or T2 at a rate of 0.15

sec - 1, and 50 percent can detect all the targets at a rate of

0.16 sec -1 .

Under Assumption 2, there are 2M classes of people vis-a-

vis their ability to ultimately detect the M targets. All

targets are undetected and hence in set V. To facilitate the

mathematical expression for the probability of detection, we

introduce a new function X(M, V, t-ti, g), where M, V, and ti

have been defined previously, and g is a parameter such that

M M M

Jl= 1 J2 -Jl J S ' -
T eV TjeV Tj V

M

P= Ipt TI( I - P L L ) - ex p -IP OiPk (t - tiAtf> (10)

L*J 1 .. J1

Tjle V

For first detection ti = 0, and all Tj are elements of V; we

can abbreviate X(M, V, t-ti , g) to X(M, V, t, g). The explan-

ation of the function X(M, V, t, g) is straightforward. It

represents the probability of detection of all classes of

people who can detect exactly g out of the M targets; for each

class that can detect Tj , Tj2, ... Tj , the probability that

one is a member is

k L - P)
k- l I .L=I

Tj'E V

and the rate of detection is

P 0Jo, ( t - ti )/tr.

k-i 1

9



With the expression in Eq. 10, the probability of detection

under Assumption 2 is
M

P(tIM, V)=XX(M,V,t,i ) (11)
i=1

Since targets are independent, the probability in infinite time 0

is

M
P(t=o-)=1-J7J (1-P .). (12)

i-1i= I

For the standard example we have chosen with three targets,

there are eight classes of observers. Our expression for P(t)

has seven terms (those observers who cannot detect any target

do not contribute):

P (t 13, {T1, T2, T3}) = 0.28[1 - exp (-0.16t)] + 0.28[1 - exp (-0.15t)]
+ 0.12[1 - exp (-0.11t)] + 0.07[1 - exp (-0.06t)] (13)
+ 0.12 [1 - 2xp (-0.1t)] + 0.07[l - exp (-0.05t)]
+ 0.03 [1 - exp (-0.01t)]

The first term is for that class of people who can find all the

targets, the next three terms represent those who can find two

of these targets, and the last three terms are for people who

can find only one target.

Finally, we must consider the case where P. is not due to

a lack in any individual member of the observer ensemble, but

where search gets ineffective as time passes (Assumption 3).

In that case, the probability of detection is simply

P (t I M, V) = P [ 1- exp (-p0 /tr ) ] , (14)

10



where

M

PO= Poi(15)
1=1

Additional assumptions are needed to calculate P,*. Let us

make the following unphysical approximation: Single-target

search is effective with an arrival rate of Poi until t = to

for a given scene, when it becomes totally ineffective. (This

approximates the actual case where search becomes less effec-

tive as time progresses). In that case, for the ith target

P I= 1-exp(-POIf (16)

The probability of not finding the target by to is

1-P.= exp (-Poto/tf). (17)

The probability of not finding any target by t0 is

M

1-P = 7J exp (-Pt/tf) =exp(-Poto tt), (18)
i=1

and hence

P* = 1 - exp (-Poto /t ) (19)

But this is just the P. one would have expected for a

single-target acquisition process where P0 = P0 *. Thus, the

multitarget case looks identical to the single-target acquisi-

tion process where the arrival rate P0 * is given by Eq. 15,

and P.* is given by

11



M

P=IH(-P (20)
1=1

Thus,

P (t) = P [1- exp (-Po t /t)] (21)

It is interesting to note that Eq. 16 predicts that for

small P0 i

P
'i tf oi' (22)0

i.e., that Pi is linearly dependent on Poi. As stated in

our section on single-target acquisition, this has been empiri-

cally noted in field tests analyzed by the CNVEO model.

In the standard three-target numerical example, this

would yield:

P (t I 3, {T1 , T2, T3}) = 0.97[1 - exp (-0.16t)] (23)

Figure 1 gives the results from theexample calculated in Eqs.

9, 13, and 23. While the example worked out in the text shows

differences for the different assumptions, the differences are

most dramatic if several targets exist, each with low P..

For example, if we have five targets with P. equal to 0.2

and P0/tf = 0.1, the probability-of-acquisition curves shown in

Fig. 2 are obtained.

12



STANDARD EXAMPLE
1.0'

XxxXXX****** e *

xX + +
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FIGURE 1. Cumulative probability distribution for
three targets as described in the text.
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EXTREME EXAMPLE
1.0-

0.8

X XX XX XKXXXX XXXXXXX XKXXx x .x .. .

0.6 Xx

x + ASSUMPTION 1
* ASSUMPTION 2

0 x ASSUMPTION 3
0.4-

0.2- . . .I . . . . . . . .I . . . . .I . . . . . . . .

+

0.0 I I I I

0 5 10 15 20 25 30

TIME (sec)

FIGURE 2. Cumulative probability distribution
for five identical targets with Pi =
0.2 and Poi = 0.1, illustrating dramatic S
differences as a result of the choice of
assumption.
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C. MULTITARGET ACQUISITION--MULTIPLE DETECTION

Often one does not complete the FOV search when the first

target is acquired, so we must now consider the acquisition

times for several targets.

The key to understanding the multiple-detection FOV search

model is to realize that a cumulative probability distribution

of the form

P i(t) exp(--Pot) (24)

has the important property that

P(t A)=1-exp - (t-tl), (25)

where A is the event that the target has not been found by

time t. Equation 25 states that if the target has not been

found by time t1 , it is equivalent to starting the process

again, i.e., the probability that the target is found in the

next At is PoAt/tf, just as it has been throughout the process.

(In actual combat modeling, the beginning of the search for the

second target would occur not at the detection of the first

target but when one has finished with the first target as one

chooses.)

The effect on muititarget acquisition is important. Assume

that we have two targets with both PwI and P. 2 equal to unity;

the probability distribution for the time for first detection

is then

i~exp[PO I + P02)
P(t12,{T.T)= 1-exp t (26)
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Assume that Target 1 was found at tl; the probability distribu-

tion for finding Target 2 is then 0

P (t 12, 1,{T21, T1, 1, t )  1 -e p --02 (t -_t 1)  ,(27)

where the notation for P(tIM, M-M', V, Tj, J, ti) is given in

the previous section. Similarly, if one assumes that Target

2 was found at t1 , the probability distribution for finding

Target 1 is

P(t 12, 1, {T 1},T 2,2,tj)= 1-exp )- tLtf

If which carget was detected at t1 is unknown, the new process

must be evaluated as the sum of probabilities that Target 1 or

Target 2 was found. If a target was found at t, the probability

P1 that the first target was the one detected is

P1 (t1) (29a)

P (t) + P2 (t)

and the probability P2 that the second target was the one that

was first found is

P2 (t1 ) 0

P2 = ()P 2 (t) (29b)P1 (td) + P2 (td)

where Pj(t 1 ) and P2 (tl) are the detecriun probabilities for the

single Targets 1 and 2, respectively. The probability for the

second target acquisition is

P (tIt ) P2  1 -exp " (t -t )1 + IP1 -exp [ (tt- J (30) 
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where P(tltI) is the probability of the second acquisition when

all that is known is that the first acquisition of some target

occurred at time tj.

How one incorporates P=i will once again depend on why

one assumes that nonunity values of Pi occur.

Several mechanisms can affect the value of P,,. Quali-

tatively, Assumptions 2 and 3 state that finding a target T1 at

time t1 does not yield any information concerning the probability

of ever finding any other target. However, Assumption 1 states

that if one finds a target with a certain number of line pairs,

one will certainly find all targets that have a greater number

of line pairs.

A second effect is that if the first detection was of T1

at time t1 , there is additional implicit knowledge that the

observer has not found T 2 at time t I . The probability that a

person is a member of the class that will eventually find the

target changes as a function of time. Obviously, if one has not

found the target by time tI , one is more likely to be a member

of the class that never finds the target than one was at time

t = 0. Mathematically for each target, the probability of ever

finding the target, given that one has not found the target by

time tl, is

PO x

P m(t ) (31)

(1-P )+P exp -t t I

Finally, if one assumes that search efficiency decreases

as a function of time, one must ask whether finding a target

somehow rejuvenates the process. It is possible to imagine that

finding the target allows the process to restart psychologically.

Quantitatively, assume that we have M targets, M' of which

have been found. The last target was found at time ti; the least
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obvious found so far is Tj. The targets have been ordered in

set V so that the detectability of Ti is greater (higher Pi) 0

than that of Ti+I.

Under Assumption 1, the number of classes has changed from

M + 1 to M - J + 1 classes. An observer will certainly find Ti

when i < J; the various classes of observers consist of those who 0

can find no more targets with i > J, those who can only find Tj+l,

those who can only find Tj+l and TJ+2, etc.

The probability of being in the class that can see the ith

target but not the i+lth target is 0

P,-i (d "P-i + 14(t1)

and, by analogy with Eq. 31 and by writing P~i(O) for our

former Pi, we obtain

[P(0) -P (0)] exp OL
o+1(L--J+1 tf J

Pi (td- P.+1 4(1) = ( 0 apO t-32)
SP-a (0)P 1 (0) [exp P t)

LJ+1

This expression is obtained by considering the proportion

of observers in each class who would be expected not yet to

have found the target. For example, consider the case of two

targets, T1 and T2 , where T1 is more observable than T2 . There

are three classes at time t = 0: Class 1, those who can find

no targets; Class 2, those who can find target TI; and Class 3,

those who can find T1 and T2 . Each of these classes can be

broken into subclasses based on performance as of time tI . No

one in Class 1 can find a target, and only one subclass exists.

There are two subclasses in Class 2: (1) those who find a

target T1 by time t I , and (2) those who do not. In Class 3 there

are four subclasses: (1) those who find no targets by time tI ,
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(2) those who find TI , (3) those who find T2 , and (4) those who

find both T1 and T2 by time tI . Equation 32 consists of the

proportion in each class who match the known situation at time

cl. If we assemble the targets not found by time ti into a set

V and the last detection was at tI , we have

M

P (t I M, M -M', V, T, J, tl)=X [P "(t 1)- P + 1 (t)]
i-J

where P(tIM, M-M', V, Tl, J, tI ) is the probability of next

detection, given that the targets not found are in set V, the

least observable target found was Tj, and the last target was

found at time tl.

In the standard numerical example we have been using, if T1
has been found at tl, the probability of next detection is

P (t 3, 2, {T2, T3}, TI, 1, ti) =

[P-2 (t1) - P 3 (t1)] exp (-0.05t1) {1 - exp [-0.05 (t - tj)] (34)

+ P.3 (tl)] exp (-0.06t,) {1 - exp [-0.06 (t - ti)]},

The other alternative explanations for P,. yield much simpler

expressions. Under Assumption 2, the probability of finding a

particular target is independent of finding any of the other

targets. The only effect on P. is that expressed in Eq. 31,

i.e., as time goes by without finding a particular target, the

probability of ever finding the target goes down. Thus, if the

M-M' unfound targets are elements of set V and the last detec-

tion was at time tI , we obtain Eq. 35 similar to Eq. 11:
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M-M"(tIM, M-M M, tV, Ti, J, tj) = X (M, V, t - t", g) (35)

i~ 1

The term X(M, V, t-ti , g) is as defined in Eq. 10; the values of

Pwi must be replaced by Pwi(tl) from Eq. 31.

In our standard numerical example, if the first target is

found at time tI, the probability of the next detection as a

function of time is

P (t I 3, 2, {T2, T3}, T, 1, t1) = P- 2 (t1) P.-3 (tl) {1 - exp [-0.06 (t - tj)] 0

+ P*-2 (tj) [1 - P*-3 (tl)]{1 - exp [-0.05 (t - t1)]} (36)

+ P*-3 (t1) [1 - P- 2 (tl)]{1 - exp [-0.01 (t - t1)]

where

0.7 exp (-0.05t,) (37)

P-2 (t1) = 0.7 exp (-0.05t,) + 0.3

and

0.5 exp (-0.0It) (38)
.-3 0.5 exp (-0.01tj) + 0.5

Finally, if the cause of P. is the drop in search effi-

ciency as a function of time, an assumption must be made con-

cerning the effect on the human psyche of finding a target at

time tl. If the finding of a target restarts the process and

causes a person to search as efficiently at time ti + at as

at time At, the values of Pi remain constant as a function

of time. Thus if M-M' targets are left in set V, we have

P(tM M-M',V, Tj, J, t)=P {1-exp[---(t-t 1 (3
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where

P . exp (-Poto/tf), (40)

M

P. 01" ((41)
i-i

and

M

i-i
TeV

On the other hand, if a person's search efficiency con-

tinues to deteriorate with time despite having found a target,

the values of P-i used in Eq. 39 must be changed. The new

values of Pw are lower than those in Eq. 19:

P =1-exp i (to - tl )  (43)

This is only defined for tI < to, because the person has t,

less than to seconds (t0 -t I ) before he effectively gives up the

search. Whether Eq. 40 or 43 is correct (whether the search

process rejuvenates or continues to deteriorate) is unknown; a

method to determine which is correct from field test data is

discussed later in this paper.

Assuming that the process rejuvenates, we can calculate our

standard numerical example. If Target 1 was detected at time

tI , the time for next detection is
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P (t 13, 2, {T 2, T3}, T 1, 1, t1) = 0.85 (1 - exp [-0.06 (t - tl)]} (44)

In Eqs. 33, 35, and 39 for Assumptions 1, 2, and 3, re-

spectively, we assume that it is known which targets have been

acquired. If this is not so, one must take summations of the

probabilities of detection, given a set of found targets, times

the probability of that set of targets being found. A prelim-

inary example of this was given in Eqs. 28-30; further develop-

ment of this is outside the scope of the paper.

D. SUMMARY

In the results obtained for field-of-view search in a

multitarget environment, we have seen that the single-target

model contains two parameters: P0 , the glimpse probability for

those members of the normal observer ensemble who can find the

target; and P,, the fraction of the normal ensemble who can

ever find the target. While the physical motivation for P0 is

straightforward and easily transferable to the multitarget

environment, the origin and motivation for P. remain unknown.

Three possible explanations of P. are given in the text.

Expressions for the probability of first detection are then

developed for each of the three possibilities. Expanding the

problem to the case where M' out of M targets have been found

introduces additional complications, essentially because P.

changes when one is given that M' specific targets have been

found and that M-M' targets have not. In the next section, we

discuss implementing this model in field-of-regard (FOR) search.
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III. FIELD-OF-REGARD SEARCH

A. OVERVIEW OF CNVEO MODEL

In the CNVEO model, the field of regard (FOR) is divided

into a discrete number of fields of view (FOVs). Search

occurs systematically through the FOR; each FOV is scanned for

to ' seconds. The entire FOR scan takes nt 0 ' (or t s ) seconds,

where n equals the number of FOVs.

Assume that the single target has a P. equal to 1. In

that case, the probability that the target is found in ts seconds

(of which t o ' was spent with the target in the FOV) is

P (t) = [1 - exp (-Poto/t)]. (45)

After m scans, the probability that the target is found is

P(M) = [1 - (1 - P,)Ml-.46P~m=1(-~'I (46)

If one introduces a nonunity value of P., this gives

P (M)= P a*[I-(I - P)MI. (47)

For small values of Ps, this can be approximated as

P (m) = P [1 - exp (-Psm)] (48a)

or

P (t) = P [1 - exp (-P t/t)] (48b)
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Note that Eqs. 48a and 48b are valid only for small Ps, as given

in Eq. 45.

B. MULTITARGET ACQUISITION--FIRST DETECTION

The multitarget detection scenario closely follows the

single-target analysis. We start by assuming that the targets

all have P~i and are randomly distributed through the FOR.

Each target will hence be in the FOV for to' seconds for every

scan of duration ts seconds. In that case, the probability that

any particular target will have been found at the end of scan Psi

is

P 1- exp (-Poito/t) (49)

The probability that one or more of the M targets has been found

at the end of the scan is

M

P = 1- 1 (1-P si)" (50)
i= 1

The resulting probability of detection (looking for M targets

in m scans) would be

P(mIM, V)= [1-(1-P)] (51)

or

P (t I M, V) = [1 - exp (- tPs/t)] (52)

for small Ps*.

Introducing a nonunity P-i for each of the targets affects

the FOR target acquisition process much as it affected the FOV

search process. If P,.i is due to a fraction of the populace

who cannot find a target because they need more line pairs
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(Assumption 1), we must divide the population into groups: those

who cannot find any target, those who can only find one target,

etc. As in Eq. 8 for FOV search, we have for FOR search

MM

P(mIM, V)=X(P.i-P+ 1) 1- (1-Pj} (53)

or

M

P (t I M, V) = (P.i - P-i+ 1) 1-exp -t Ps/ts) (54)
i-A1

If, instead, the probability that an individual will ever

find a particular target is independent of his ever finding

some other target (Assumption 2), as in Eq. 11 for FOV search,

the probability for FOR search is

or

MM

P(tIM, V) =M X' (M, V, t, i), (55b)

iul

-'here X'(M, V, t, i) is identical to X(M, V, t, i) except that

Poi/tf is replaced by Psi/ts.
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Finally, if P. is due to a decrease in search efficiency

with time, we have a much more complicated situation. We have

previously assumed that the deterioration in search efficiency

is due to both discouragement at not finding a target and

mental fatigue. Until now, when going from the single-target

FOV search to the multitarget FOV search, we have assumed that 0

the deterioration in search efficiency is the same in either

case. However, how do we extrapolate the parameteLs of FOR

search from FOV search data? 0
We can consider two extreme cases. In the first, we can

assume that the search efficiency deteriorates because of the

length of time a particular FOV has been in view cumulatively

during the FOR search process. In that case, the P0. values

remain the same and we have

P(m)=P* [1- (1-P (56)

0
or

P(t)=P [1 -exp(- Pt/t)], (57)

where

P. (I P (58)

and

M
P:= P*i (59)

ili

On the other hand, if the deterioration in search efficiency

continues even though the target is not in the FOV, the new

Pi will be much lower for those targets that come into view
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later in the scan than for those that come into view earlier.

This greatly complicates the problem, and we shall not consider

the problem further here; we discuss possible field tests that

could clarify this issue in a later section.

C. MULTITARGET ACQUISITION--MULTIPLE DETECTION

The analysis done for the FOV search with multitarget

acquisition is applicable to the FOR search. Once again, the

nature of the process is such that if one has found a target at

t1 , the process begins again, and the probability of finding a

particular target in the next At is still PoAt/tf, as it was

in the beginning of the process.

Without going into further analysis, the expressions de-

veloped for FOV next-detection search are in general correct

for FOR next-detection with the substitution of Psi/ts for

Poi/ts. To be specific for FOR multitarget multiple detection,

if Assumption 1 is correct, Eq. 33 is correct for FOR search

with POk/tf replaced by Psk/ts. If Assumption 2 is correct,

Eq. 35 is correct with X'(M-M', V, t-tI , i) replacing X(M-M', V,

t-tI , i). Finally, under Assumption 3, Eqs. 39-42 are correct

with Poi replaced by Psi and tf replaced by ts . The discussion

concerning the effects of FOR search and target acquisition on

search efficiency is still relevant here.
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IV. BATTLEFIELD MODEL

While the expressions in Chapters II and III are quite

involved, their implementation in a battlefield model, such as

the Army's battalion-level models, CASTFOREM and CARMONETTE,

is straightforward. In this section, we discuss the method of

implementing the single-target acquisition model in a computer-

run battlefield model. We then consider the multitarget FOV and

FOR cases, with special emphasis on how the different methods

of calculating P. affect the implementation. We commence with

a study of the basic principles involved in implementing target

acquisition in the battlefield models.

A. BASIC PRINCIPLES

Several basic principles apply, no matter which specific

model one implements. First of all, some of the models suggest

that observers can be grouped into classes. For example, in

the CNVEO model, it is assumed that a fraction of the popula-

tion Pw can find a particular target at rate P0/tf, while a

fraction (1-P.) cannot. Before the target acquisition process

commences, a particular observer can be assigned to the class

to which he will belong as the program progresses. One possible

way to implement this, to which we resort several times in this

chapter, is by drawing a random number x with a constant proba-

bility distribution between 0 and 1. If x < Pw, we assign the

observer to the class of people who can find the target; if

x > P., we assign him to the class of people who cannot. A

similar method for multiple classes is possible when needed.

A second basic principle is that to determine the time of

acquisition for an observer who can find the target and has a
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single-glimpse acquisition probability P0 , a second random

number y should be drawn. This number can then be input into

the expression

t = -In (I- y) / (Pt (60)

to obtain the time for acquisition. (Equation 60 is obtained

by inverting Eq. 3 for time.)

The third principle involves the multitarget acquisition

process. If one has several acquisition processes going on

simultaneously, one must either combine these processes into a

single process (as described later in the text) or draw separate

random numbers for each process. If one mistakenly chooses only

one random number for both separate processes, one obtains the

unphysical result that the target with the higher single-glimpse

acquisition rate is always found before a target with the lower

single-glimpse acquisition rate. The nature of the random pro-

cesses demands that the less obvious target should be acquired

before the more obvious target a fraction of the time. We are

now prepared to discuss implementinq taraet acauisition in

specific scenarios.

B. SINGLE-TARGET FOV ACQUISITION

In the CNVEO single-target FOV acquisition model, there

are two classes of people: those who can find the target and

those who cannot. The ratios of those who can and those who

cannot to the entire population are P, and 1-P., respectively;

the single-glimpse probability for those who can is P0 .

By the principles stated in the previous section, two

random numbers between 0 and 1 should be drawn: one that deter-

mines whether the observer can find the target, and a second

that determines when the observer acquire! the target, given

that he does acquire it. In this method Eq. 60 would be used

to get the actual acquisition time. An alternative method is
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possible in which only one number x needs to be drawn. If the

number x is between 1 and P., the observer does not find the

target and the time to acquire tj is infinite. If the number

x is between 0 and P,,, one uses the target to determine the

acquisition time by renormalizing x; thus,

t = -I (I - x/P )/ tf). (61)

The acquisition time can then be used in the battlefield-

model simulation in two ways. If there is infinite time to

search the FOV, the value of t1 is given by Eq. 61. However,

if there is limited time t0 to search the FOV, an acquisition

time larger than to is equivalent to the target's never being

found. In that case, to seconds pass in the model and the

target remains undetected.

C. MULTIPLE-TARGET FOV ACQUISITION

In the battlefield models, the placement of both targets

and observers is known. Thus, all search is essentially FOV

se-!arch; even when the FOR is larger than the FOV, At any one

time the FOV is known for the observer. We thus emphasize

implementing multitarget acquisition in a single FOV.

Assume that one has M targets in the FOV. As we showed in

Chapter II, there are several models for the value of P. to

determine which targets can be detected. Assumption 1 has M-.-l

classes of people: one class can find no targets, one class can

find the most obvious target, one class can find the two most

obvious targets, etc. In this case, the probability of being

in the i+lth class (who can see exactly i targets) is

P~i - P-i+l (Eq. 7). The assignment to a class can be done

by a single draw of a random number x; if the number x is such

that Pi > x > P.i-l, the observer is a member of that class.

Assumption 2 has 2M classes where the probability of being

able to detect Ti is independent of being able to detect Tj.
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In that case, M random numbers can be drawn, and the ith number

determines whether or not the observer can detect the ith

target.

Assumption 3 has only one class of observer. All targets

are potentially detectable by all observers; P. is due to the

deterioration of all observers' search efficiency with time.

No random number need be drawn to determine the class of the

observer.

Once we have determined the class of the observer in the

battlefield model, he stays in this class for the duraticn of

the program. (Obviously, many simulations need to be run to

obtain results relevant to a genuine normal observer ensemble.)

The next step is to determine the time it takes the observers

to find the various targets. There are two methods possible

here for Assumptions 1 or 2. If the observer can detect

targets that are elements of the set V (which is a subset of

the set of all targets), then

M

PO::_ Poi(62)
i=l1

T1 EV

Draw a random number y, and the time for first detection t1 is

t i = -In (1 - y)/(P;/tf) (63)

An alternative is to draw a separate random number for each of

the targets in set V. The detection times are then

ti = -In (1 - y)/(Poi/tf), (64) S

and the smallest t i is the first detection tj. This method is

superior since it permits the program to determine which target

was found. As was stated for single-target acquisition, if no •

target can be found, t1 is infinite; similarly, if we limit the
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acquisition time to to in the FOV, we assign a "target not found"

condition if t1 > to. A time of t0 seconds must be charged to

the program, during which it tries and fails to find the target.

Subsequent detections are determined by the remaining acquisition

times.

Under Assumption 3, the proper equation to use is

= -in (I- yP )/(Pdtf, (65)

where

M

P_ =1-[ (-P .0 (66)

for y < P®*. If y > P.*, the target is never found. Alterna-

Lively, to determine which target is found one can draw L random

numbers (where L is the number of observable targets for a par-

ticular class of observers) and calculate the arrival times by

ti = -In (1 - y/P.)/ (Poi/tf), (67)

The smallest ti becomes tI . Subsequent detections are deter-

mined by the remaining acquisition times.

In summary, first-detection acquisition times are fairly

easy to obtain in the multitarget environment. One first deter-

mines what class of observer is manning a particular sensor;

that assignment remains for the duration of the program. This

is done by a single-number or multiple-number draw. The number

of classes one divides the observers into depends on the assump-

tions one uses for the origin of P.. Finally, given L targets,

one draws L random numbers and computes the detection times;

alternatively, one may combine the L targets into a single

process and draw one random number.
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Two pitfalls must be avoided in these methods. First, one

cannot use the same random number for both the determination of 0

class and the determination of acquisition time. Second, one

cannot use a single random number and still look at the targets

separately.

This is best explained through an example. We use the

standard multitarget example that we used in Chapter II with

Pwl = 0.8, P- 2 = 7, and P- 3 = 0.5. Under Assumption 1,

we draw a single number x. If x > 0.8, the observer can find

no targets. If 0.8 > x > 0.7, he can find T1 and T2 , and if

x < 0.5 he can find TI , T2 , and T3. Under Assumption 2, three

numbers will be drawn: xl, x2 , and x3. If xl > 0.8, Target 1

cannot be found; if xI < 0.8, it can. If x2 > 0.7, Target 2

cannot be found; if x2 < 0.7, it can, etc. For Assumption 3,

all three targets can be detected; no number need be drawn.

Finally, one or L random numbers are drawn, and the acquisition

times are computed.

If the number to determine the class were also used to

determine the acquisition time, an incorrect answer would be

obtained. For example, under Assumption 1 if x = 0.75, we would

determine that only Target 1 can be found and that it takes a

relatively long time to find it. There would be no possibility

of determining that only Target 1 can be found and that it takes

a short time to find it, which is contradictory to the model.

Similarly, if a single random number were used to calculate the

acquisition times for T1 , T2 , and T3 separately and the minimum

detection time were taken, the target with the largest Poi would

always be found first; this, too, is nonphysical and must be

avoided.

In the CASTFOREM and CARMONETTE models, one always knows

which targets are detected; hence, none of the complications ot

computing the probability of which target was found (Eqs. 29-30),

given that a target was found, are relevant. Similarly, the

model chooses which class a particular observer belongs to at
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the beginning of the program; there is thus no need to recomjute

these probabilities on the basis of the observers' performance

(Eq. 31).

For FOR detection, there arises the question of what the

search pattern is. Since the particular FOV being searched at

any one time is known, the more general equations for FOR search

are not needed. However, it is interesting to note that Eqs. 47

and 48 for small Ps can be shown to be valid approximations in

both systematic and random search patterns. Thus, if one does

not "know" the particular FOV being searched, the equations for

FOR search may apply regardless of search strategy.
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V. FIELD TESTS AND EXPERIMENTS

The models presented in this paper are quite tractable

mathematically. Experimental data is needed to validate the

models and evaluate the particular algorithms the models have

chosen. In addition, for the models to be useful we must

understand how they can be used to evaluate actual field tests.

This will be the subject of this chapter.

A. VALIDATING EXPERIMENTS

We wish to emphasize from the outset that some of the ex-

periments needed to validate the models are relatively inexpen-

sive and simple to set up. While data from previously conducted

field tests is useful, some small laboratory experiments may

provide important information on the nature of multitarget

acquisition.

1. Classes of Observers

The major issue raised in this paper involves the nature

of Pm. Is it due to a fraction of the population needing more

resolution than was available (Assumption 1), is it due to a

fraction of the population not recognizing the target against

the clutter (Assumption 2), or is it due to deterioration in

search efficiency as a function of time (Assumption 3)? Several

experiments, suggested below, would determine the answer.

For the first experiment, take three groups of N random

observers. The first group should attempt to find a single

target in realistic terrain in several displays as a function

of time. Thus, for each display, the time it takes each of the

N observers to acquire the target is noted. Values of P0 and

P, for each target-terrain orientation are obtained. The second
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group should follow the same acquisition process on the same

displays, except that the target is located in a different spot. 0

New values of P0 ' and P.' for that target-background combination

are found. Finally, the third group looks at the display when

both targets are present, and this group's attempts to acquire

both targets (P0 " and P.") are recorded. 0

If Assumption 1 is correct, P,," should equal the maximum

of P.' and P. for each picture. If the more obvious target

cannot be obtained by a fraction of the peoplt , they certainly

cannot obtain the less obvious target. Moreover, no individual

should be able to find the "less-visible" target and not the
"more-visible" one. This can be confirmed on a person-by-person

evaluation of the members of the third observer group. On the

other hand, Assumptions 2 and 3 would give values of P ." greater

than P . and P.'; in particular,

P "=P +P '-P P' (68)

This, too, can be examined in the experiments.

To distinguish Assumption 3 from Assumptions 1 and 2, a

second experiment can be performed on single-target displays.

A group of observers is shown a set of displays on a particular

day; those displays in which the observer cannot find the tar-

get in an essentially infinite time are recorded. After a long

period of time, when memory has faded, the same displays should

be shown again. Assumption 3 states that those observers who

do not find the target the first time have a finite chance of

finding the target the second time. Assumptions 1 and 2 state

that they do not. This can be quickly determined.

2. Acquisition Rates

The model predicts that the rate of acquisition P0 * increases

when more targets are in the field of view by the equation

M
P(, P0t (69)

i-I
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for the M target in the FOV. Given the previous section, one

could use the same multitarget experiment to determine if the

rates of acquisition have increased as expected.

In addition, under Assumption 3, where the search effi-

ciency deteriorated as a function of time, we questioned whether

finding a target would rejuvenate the search process. From the

first experiment in the previous section one can obtain values

for when observers effectively ceased to obtain a target. By

comparing the single-target and multitarget times, it would be

interesting to see the lengths of time effective search appears

to be occurring.

Moreover, all the models in this paper show that the inter-

arrival times for target acquisition should increase in the

multitarget scenario. For example, given two identical targets

with an average time for acquisition for each alone of to, one

would expect the first target to be obtained on average in t0 /2

seconds, while the second target should be obtained on average

to seconds later, or 3 t0 /2 seconds after the start of the

search process. The varying acquisition time for the ith tar-

get has been observed in a recent thesis by Dubois. 6 The first

experiment suggested in the previous section would provide a

further confirmation.

B. FIELD TEST INTERPRETATION

One of the major values of the model in this paper is that

it allows the multitarget acquisition process in field tests to

be understood.

When interpreting the data, there are two ways to process

it. One can, essentially, average the acquisition times for

individual targets or several targets over a group of observers.

While this is useful and valuable for evaluating systems, it

should be noted that much detail is lost in averaging. Such

details as
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* Which observers are able to detect both Ti and Tj

0 The interarrival time between finding Ti and Tj

0 Whether classes of observers exist who consistently

do better target acquisition than others

can be derived from the data. This can help in developing both

a more representative group of observers to perform field tests

and a higher quality of observer for actual assignment in mili-

tary performance. Moreover, the application of this model to

battlefield models allows an accurate simulation of real field

tests to occur.
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VI. CONCLUSION

A multitarget acquisition model has been developed as an

extension of the CNVEO single-target acquisition model. The

implementation of this model in battlefield combat simulations

has been outlined. Finally, the use of this model to accurately

simulate field tests and the use of simple experiments to

validate the model have been suggested.
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